Using the identity,

$$V = \left(\frac{\partial G}{\partial P}\right)_{T} , \qquad (A.13)$$

and combining Eqs. (A.2), (A.8), (A.9), (A.12), and (A.13) results in

$$\left(\frac{\partial f(V)}{\partial V}\right)_{T} = -T_{0} b C_{V} + B_{0} V_{0} \left(\left(\frac{V}{V_{0}}\right)^{-1} - 1\right) . \tag{A.14}$$

Integrating Eq. (A.14) for f(V) and substituting in Eq. (A.2) results in the expression,

$$E = E_0 + C_V(T-T_0) - T_0 + C_V(V_0-V) + V_0 + V_0$$

Equations (A.8), (A.12), and (A.15) define the phase 1 and phase 2 equilibrium surfaces within initial values V_{01} , V_{02} , E_{01} , E_{02} , S_{01} , and S_{02} . The value for V_{01} for iron is easily measured while V_{02} has been inferred from x-ray measurements of coexisting phases. The value for S_{01} can be arbitrarily chosen while S_{02} is fixed by the difference in entropy between phases which can be inferred from the measured slope of the phase line or obtained from a thermodynamically consistent empirical equation of state which is fitted to all types of experimental data. The magnitude of E_{01} can be arbitrarily chosen while E_{02} must be specified by some additional relationship. A relationship which makes the connection between the equilibrium surfaces is:

where G_{21} is the difference between Gibbs energies of the phases, (P*,T*) is the equilibrium transformation point. This equilibrium condition with Eq. (A.9) determines the value of E_{02} . Use of Eq. (A.16) to determine the equilibrium surface provides no assurance that the state point in any real process will actually lie on such a surface (cf Chapter 5).

The values for E_{01} , S_{01} , and S_{02} at 1 atmosphere pressure and a temperature of 295°K were chosen to be the same as those used by Andrews. The value for E_{02} was determined from the relation $G_{21}(116 \text{ kbar}, 332°\text{K}) = 0$. The initial value of C_{V2} is the classical value of 3R where R is the gas constant. The initial values used to define the equilibrium surfaces are listed in Table A.1.

TABLE A.1.--Initial values (T=295°K,P=0)

Variable	Alpha phase	Epsilon phase
v _o	0.1272	0.1208 cm ³ /gm
E ₀	7.932×10^{-4}	$1.667 \times 10^{-3} \text{ Mbar cm}^3/\text{gm}$
s ₀	4.863×10^{-6}	5.323×10^{-6} Mbar cm ³ /gm deg
n	5.917	5.102
B ₀	0.275	0.325 Mbar
Γ	1.735	2.0
c _v	4.447 × 10 ⁻⁶	$4.466 \times 10^{-6} \text{ Mbar cm}^3/\text{gm deg}$